3.687 \(\int \frac{(a+b \cos (c+d x))^2 (A+C \cos ^2(c+d x))}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=169 \[ -\frac{2 \left (a^2 (3 A+5 C)+5 b^2 (A-C)\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 \left (a^2 (3 A+5 C)+4 A b^2\right ) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{4 a b (A+3 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 A \sin (c+d x) (a+b \cos (c+d x))^2}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{8 a A b \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x)} \]

[Out]

(-2*(5*b^2*(A - C) + a^2*(3*A + 5*C))*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a*b*(A + 3*C)*EllipticF[(c + d*x)/
2, 2])/(3*d) + (8*a*A*b*Sin[c + d*x])/(15*d*Cos[c + d*x]^(3/2)) + (2*(4*A*b^2 + a^2*(3*A + 5*C))*Sin[c + d*x])
/(5*d*Sqrt[Cos[c + d*x]]) + (2*A*(a + b*Cos[c + d*x])^2*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.408209, antiderivative size = 169, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {3048, 3031, 3021, 2748, 2641, 2639} \[ -\frac{2 \left (a^2 (3 A+5 C)+5 b^2 (A-C)\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 \left (a^2 (3 A+5 C)+4 A b^2\right ) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{4 a b (A+3 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 A \sin (c+d x) (a+b \cos (c+d x))^2}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{8 a A b \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*Cos[c + d*x])^2*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(7/2),x]

[Out]

(-2*(5*b^2*(A - C) + a^2*(3*A + 5*C))*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a*b*(A + 3*C)*EllipticF[(c + d*x)/
2, 2])/(3*d) + (8*a*A*b*Sin[c + d*x])/(15*d*Cos[c + d*x]^(3/2)) + (2*(4*A*b^2 + a^2*(3*A + 5*C))*Sin[c + d*x])
/(5*d*Sqrt[Cos[c + d*x]]) + (2*A*(a + b*Cos[c + d*x])^2*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2))

Rule 3048

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m
 - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(n +
 2) - b*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*(A*d^2*(m + n + 2) + C*(c^2*(
m + 1) + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] &
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3031

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((b*c - a*d)*(A*b^2 - a*b*B + a^2*C)*
Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b^2*f*(m + 1)*(a^2 - b^2)), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b
^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m +
 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && Ne
Q[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+b \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac{7}{2}}(c+d x)} \, dx &=\frac{2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2}{5} \int \frac{(a+b \cos (c+d x)) \left (2 A b+\frac{1}{2} a (3 A+5 C) \cos (c+d x)-\frac{1}{2} b (A-5 C) \cos ^2(c+d x)\right )}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{8 a A b \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}-\frac{4}{15} \int \frac{-\frac{3}{4} \left (4 A b^2+a^2 (3 A+5 C)\right )-\frac{5}{2} a b (A+3 C) \cos (c+d x)+\frac{3}{4} b^2 (A-5 C) \cos ^2(c+d x)}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{8 a A b \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (4 A b^2+a^2 (3 A+5 C)\right ) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}-\frac{8}{15} \int \frac{-\frac{5}{4} a b (A+3 C)+\frac{3}{8} \left (5 b^2 (A-C)+a^2 (3 A+5 C)\right ) \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{8 a A b \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (4 A b^2+a^2 (3 A+5 C)\right ) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{1}{3} (2 a b (A+3 C)) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx-\frac{1}{5} \left (5 b^2 (A-C)+a^2 (3 A+5 C)\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{2 \left (5 b^2 (A-C)+a^2 (3 A+5 C)\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{4 a b (A+3 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{8 a A b \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (4 A b^2+a^2 (3 A+5 C)\right ) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}\\ \end{align*}

Mathematica [A]  time = 0.833093, size = 158, normalized size = 0.93 \[ \frac{-6 \left (a^2 (3 A+5 C)+5 b^2 (A-C)\right ) \cos ^{\frac{3}{2}}(c+d x) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+9 a^2 A \sin (2 (c+d x))+6 a^2 A \tan (c+d x)+15 a^2 C \sin (2 (c+d x))+20 a b (A+3 C) \cos ^{\frac{3}{2}}(c+d x) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )+20 a A b \sin (c+d x)+15 A b^2 \sin (2 (c+d x))}{15 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Cos[c + d*x])^2*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(7/2),x]

[Out]

(-6*(5*b^2*(A - C) + a^2*(3*A + 5*C))*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + 20*a*b*(A + 3*C)*Cos[c +
d*x]^(3/2)*EllipticF[(c + d*x)/2, 2] + 20*a*A*b*Sin[c + d*x] + 9*a^2*A*Sin[2*(c + d*x)] + 15*A*b^2*Sin[2*(c +
d*x)] + 15*a^2*C*Sin[2*(c + d*x)] + 6*a^2*A*Tan[c + d*x])/(15*d*Cos[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [B]  time = 1.161, size = 913, normalized size = 5.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*b^2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d
*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2
))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+4*a*b*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/
2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-2*b^2*C*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*El
lipticF(cos(1/2*d*x+1/2*c),2^(1/2))-2/5*A*a^2/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/
2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1
/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*EllipticE(cos(1/2*
d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+24*sin(
1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si
n(1/2*d*x+1/2*c)^2-1)^(1/2)-8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/
2*c)^2)^(1/2)+4*a*A*b*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1/2+cos(
1/2*d*x+1/2*c)^2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^
4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+2*(A*b^2+C*a^2)*(-(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*
d*x+1/2*c),2^(1/2))+2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*
c)^2)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )}{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)^2/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{C b^{2} \cos \left (d x + c\right )^{4} + 2 \, C a b \cos \left (d x + c\right )^{3} + 2 \, A a b \cos \left (d x + c\right ) + A a^{2} +{\left (C a^{2} + A b^{2}\right )} \cos \left (d x + c\right )^{2}}{\cos \left (d x + c\right )^{\frac{7}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

integral((C*b^2*cos(d*x + c)^4 + 2*C*a*b*cos(d*x + c)^3 + 2*A*a*b*cos(d*x + c) + A*a^2 + (C*a^2 + A*b^2)*cos(d
*x + c)^2)/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**2*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )}{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)^2/cos(d*x + c)^(7/2), x)